skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Papeş, Monica"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT Species are distributed in predictable ways in geographic spaces. The three principal factors that determine geographic distributions of species are biotic interactions (B), abiotic conditions (A), and dispersal ability or mobility (M). A species is expected to be present in areas that are accessible to it and that contain suitable sets of abiotic and biotic conditions for it to persist. A species' probability of presence can be quantified as a combination of responses toB,A, andMviaecological niche modeling (ENM; also frequently referred to as species distribution modeling or SDM). This analytical approach has been used broadly in ecology and biogeography, as well as in conservation planning and decision‐making, but commonly in the context of ‘natural’ settings. However, it is increasingly recognized that human impacts, including changes in climate, land cover, and ecosystem function, greatly influence species' geographic ranges. In this light, historical distinctions between natural and anthropogenic factors have become blurred, and a coupled human–natural landscape is recognized as the new norm. Therefore,B,A, andM(BAM) factors need to be reconsidered to understand and quantify species' distributions in a world with a pervasive signature of human impacts. Here, we present a framework, termed human‐influenced BAM (Hi‐BAM, for distributional ecology that (i) conceptualizes human impacts in the form of six drivers, and (ii) synthesizes previous studies to show how each driver modifies the natural BAM and species' distributions. Given the importance and prevalence of human impacts on species distributions globally, we also discuss implications of this framework for ENM/SDM methods, and explore strategies by which to incorporate increasing human impacts in the methodology. Human impacts are redefining biogeographic patterns; as such, future studies should incorporate signals of human impacts integrally in modeling and forecasting species' distributions. 
    more » « less
  2. The three‐dimensional (3D) physical aspects of ecosystems are intrinsically linked to ecological processes. Here, we describe structural diversity as the volumetric capacity, physical arrangement, and identity/traits of biotic components in an ecosystem. Despite being recognized in earlier ecological studies, structural diversity has been largely overlooked due to an absence of not only a theoretical foundation but also effective measurement tools. We present a framework for conceptualizing structural diversity and suggest how to facilitate its broader incorporation into ecological theory and practice. We also discuss how the interplay of genetic and environmental factors underpin structural diversity, allowing for a potentially unique synthetic approach to explain ecosystem function. A practical approach is then proposed in which scientists can test the ecological role of structural diversity at biotic–environmental interfaces, along with examples of structural diversity research and future directions for integrating structural diversity into ecological theory and management across scales. 
    more » « less
  3. null (Ed.)
    Abstract Reporting specific modelling methods and metadata is essential to the reproducibility of ecological studies, yet guidelines rarely exist regarding what information should be noted. Here, we address this issue for ecological niche modelling or species distribution modelling, a rapidly developing toolset in ecology used across many aspects of biodiversity science. Our quantitative review of the recent literature reveals a general lack of sufficient information to fully reproduce the work. Over two-thirds of the examined studies neglected to report the version or access date of the underlying data, and only half reported model parameters. To address this problem, we propose adopting a checklist to guide studies in reporting at least the minimum information necessary for ecological niche modelling reproducibility, offering a straightforward way to balance efficiency and accuracy. We encourage the ecological niche modelling community, as well as journal reviewers and editors, to utilize and further develop this framework to facilitate and improve the reproducibility of future work. The proposed checklist framework is generalizable to other areas of ecology, especially those utilizing biodiversity data, environmental data and statistical modelling, and could also be adopted by a broader array of disciplines. 
    more » « less
  4. Abstract Managing social‐ecological systems (SES) requires balancing the need to tailor actions to local heterogeneity and the need to work over large areas to accommodate the extent of SES. This balance is particularly challenging for policy since the level of government where the policy is being developed determines the extent and resolution of action.We make the case for a new research agenda focused on ecological federalism that seeks to address this challenge by capitalizing on the flexibility afforded by a federalist system of governance. Ecological federalism synthesizes the environmental federalism literature from law and economics with relevant ecological and biological literature to address a fundamental question: What aspects of SES should be managed by federal governments and which should be allocated to decentralized state governments?This new research agenda considers the bio‐geo‐physical processes that characterize state‐federal management tradeoffs for biodiversity conservation, resource management, infectious disease prevention, and invasive species control. Read the freePlain Language Summaryfor this article on the Journal blog. 
    more » « less
  5. This article is a Commentary onDavisonet al. (2021),231: 763–776. 
    more » « less